Home / News
News
  • Chemical mechanical polishing and nanomechanics of semiconductor CdZnTe single crystals

    2019-03-05

    (1 1 1), (1 1 0) Cd0.96Zn0.04Te and (1 1 1) Cd0.9Zn0.1Te semiconductor wafers grown by the modified vertical Bridgman method with dimensions of 10 mm × 10 mm × 2.5 mm were lapped with a 2–5 µm polygonal Al2O3 powder solution, and then chemically mechanically polished by an acid solution having nanoparticles with a diameter of around 5 nm, corresponding to the surface roughnesses Ra of 2.135 nm, 1.968 nm and 1.856 nm. The hardness and elastic modulus of (1 1 1), (1 1 0) Cd0.96Zn0.04Te and (1 1 1) Cd0.9Zn0.1Te single crystals are 1.21 GPa, 42.5 GPa; 1.02 GPa, 44.0 GPa; and 1.19 GPa, 43.4 GPa, respectively. After nanocutting is performed by the Berkovich nanoindenter, the surface roughness Ra of the (1 1 1) Cd0.9Zn0.1Te single crystal attains a 0.215 nm ultra-smooth surface. The hardness and elastic modulus of three kinds of CdZnTe single crystals decrease with the increase of indentation load. When the nanoindenter departs the surface of the crystals, the adherence effects are obvious for the three kinds of single crystals. This is attributed to the plastic sticking behavior of CdZnTe material at a nanoscale level. When the indentation load of the three kinds of CdZnTe single crystals is in the range of 4000–12 000 µN, the adhered CdZnTe material on the nanoindenter falls onto the surface and accumulates around the nanoindentation. Source:IOPscience For more information, please visit our website: www.semiconductorwafers.net, send us email at sales@powerwaywafer.com and powerwaymaterial@gmail.com

  • Study on AlGaN/GaN growth on carbonized Si substrate

    2019-02-26

    AlGaN/GaN films were grown on carbonized Si(111) substrates, which were employed to prevent impurities such as residual Ga atoms from reacting and deteriorating the surface of Si substrates. The cleaning process for the flow channel in metal organic chemical vapor deposition (MOCVD) could effectively be eliminated by using this carbonized Si substrate, and high-quality AlGaN/GaN films were obtained. Source:IOPscience For more information, please visit our website: www.semiconductorwafers.net, send us email at angel.ye@powerwaywafer.com or powerwaymaterial@gmail.com

  • PAM XIAMEN Offers Epitaxial growth of AlGaN GaN based HEMT on Si wafers

    2019-02-18

    PAM XIAMEN Offers Epitaxial growth of AlGaN/GaN based HEMT on Si wafers Recently, PAM XIAMEN, a leading supplier of GaN epitaxial wafers, announced that it has successfully developed "6-inch silicon-on-silicon (GaN-on-Si) epitaxial wafers" and its 6 inch size is on mass production. PAM XIAMEN is effective in third-generation semiconductors In order to lay out and grasp the development opportunities of the wide bandgap compound semiconductor materials (i.e. the third generation semiconductor materials) industry, PAM XIAMEN has been invested in research and development continuously, the data show that PAM XIAMEN is mainly engaged in the design, development and production of semiconductor materials, especially gallium nitride (GaN) epitaxial materials, focusing on the application of related materials in avionics, 5G communication, Internet of Things and other fields, Improving and enriching the company's industrial chain. Since its inception, PAM XIAMEN has overcome the technical difficulties of lattice mismatch, large-scale epitaxial stress control, and high-voltage GaN epitaxial growth between GaN and Si materials, and successfully developed a 8-inch silicon-based Gallium Nitride epi wafers that has reached the world's leading leve, and the 6 inch size wafer is on mass production, our general structure is now as follows: Chart 1: D-MODE Chart 2: E-MODE It is understood that this type of epitaxial wafer achieves high voltage resistance of 650V/700V while maintaining high crystal quality, high uniformity and high reliability of epitaxial materials. It can fully meet the application requirements of high voltage power electronic devices in the industry. According to PAM XIAMEN, In the case of adopting the international industry's stringent criteria, Epitaxial wafers developed by PAM XIAMEN have performance advantages in terms of materials, mechanics, electricity, withstand voltage, high temperature resistance, and longevity. In the fields of 5G communication, cloud computing, fast charging source, wireless charging, etc., it can ensure the safe and reliable application of related materials and technologies. About Xiamen Powerway Advanced Material Co., Ltd Found in 1990, Xiamen Powerway Advanced Material Co., Ltd (PAM-XIAMEN), a leading manufacturer of Wide bandgap(WBG) semiconductor material in China, its business involves GaN material covering GaN substrate, AlGaN/GaN HEMT epi wafers on Silicon carbide/Silicon/Sapphire substrate.(Click to read GaN HEMT Epitaxial Wafer details.) Q&A Q: Can you please inform us what is the difference between d mode and e mode wafers? A: There are the difference in two main points:1/Barrier structure,the typical value of D-mode is AlGaN~21nm, Al%~25%, while it is AlGaN~18nm and Al%~20% in E-mode2/E-HEMT,there are ~100nm P-GaN for deplete 2DEG Q: We are planning to work on both types of the devices. So I will discuss this with my colleagues. Can you please inform me about the differences of those wafers. I mean what ...

  • Generation of difference-frequency radiation in the far- and mid-IR ranges in a two-chip laser based on gallium arsenide on a germanium substrate

    2019-02-11

    The possibility of efficient generation of difference-frequency radiation in the far- and mid-IR ranges in a two-chip laser based on gallium arsenide grown on a germanium substrate is considered. It is shown that a laser with a waveguide of width 100 μm emitting 1 W in the near-IR range can generate ≈40 μW at the difference frequency in the region 5—50 THz at room temperature. Source:IOPscience For more information, please visit our website: www.semiconductorwafers.net, send us email at angel.ye@powerwaywafer.com or powerwaymaterial@gmail.com

  • PAM XIAMEN is comparable to the UK IQE to build Asian VCSEL epitaxial core supply chain

    2019-01-28

    PAM XIAMEN is comparable to the UK IQE to build Asian VCSEL epitaxial core supply chain Xiamen Powerway focuses on high-end compound semiconductor epitaxial R&D and manufacturing. In 2018, the 4-inch and 6-inch VCSELs were mass-produced and entered the mainstream chip manufacturers in Taiwan. Utilizing state-of-the-art MBE (Molecular Epitaxial Beam Epitaxy) mass production technology to achieve the highest quality of the industry's largest quality VCSEL epitaxial products. As more and more smartphone and IT equipment vendors follow Apple's footsteps, VCEL (Vertical Cavity Surface Emitting Lasers)-based 3D sensor systems will be integrated into their new electronics. According to Memes Consulting, the shipment of VCSEL chips for smartphones next year is expected to double to 240 million in 2018. In the next five years, the global VCSEL market will continue to grow with the capacity of relevant suppliers in the international arena. The market size will grow to $3.12 billion by 2022, with a compound annual growth rate of 17.3%.VCSEL device suppliers in Taiwan are all preparing for the strong growth of VCSEL sales in 2018.International VCSEL chip suppliers: such as Lumentum Holdings, Finisar, Princeton Optronics, Heptagon also follow up, and also strive for a share of the market in this field. At the same time, Xiamen Powerway focuses on the industry's highest quality MBE (molecular beam epitaxy) process. With the expansion of 3D sensing, data center and 5G applications, MBE technology will enter the mainstream market in the future. Xiamen Powerway has begun to supply 6-inch large-size PHEMT, VCSEL, Lasers (750nm to 1100nm), QWIP, PIN (GaAs, InP), and 25G Data Center epitaxial structure products. With the increasing use of VCSEL technology, the company's product line will expand from communications, optical communications and sensing to laser radar, industrial heating, machine vision and medical laser applications. In 2018, VCSEL will become the main driving force for the long-term growth of Xiamen Powerway. VCSEL wavelength emission beam comparison Finisar, a US VCSEL chip supplier, has been eye-catching recently and is expanding its plant capacity in Sherman, Texas, USA, with an investment of $390 million from Apple. The newly added capacity is expected to be operational in the second half of 2018. With Finisar's VCSEL capacity growth, combined with the existing Lumentum supply capabilities, Apple is expected to apply the deep 3D face recognition technology to other products beyond the iPhone X, such as the large size iPad, and applications in the AR(Augmented Reality) field. Xiamen Powerway produces China's first 4-inch 940nm VCSEL semiconductor epitaxial wafer According to IQE, the UK's largest supplier of wafer epitaxial wafers, the annual growth rate of its optoelectronics business revenue has doubled due to the demand of VCSEL. IQE's financial performance this year is set to record a new record. As VCSEL product development enters mass pro...

  • Semicoherent growth of Bi2Te3 layers on InP substrates by hot wall epitaxy

    2019-01-21

    We search for optimum growth conditions to realize flat BiTe layers on InP(111)B by hot wall epitaxy. The substrate provides a relatively small lattice mismatch, and so (0001)-oriented layers grow semicoherently. The temperature window for the growth is found to be narrow due to the nonzero lattice mismatch and rapid re-evaporation of BiTe. The crystalline qualities evaluated by means of x-ray diffraction reveal deteriorations when the substrate temperature deviates from the optimum not only to low temperatures but also to high temperatures. For high substrate temperatures, the Bi composition increases as Te is partially lost by sublimation. We show, in addition, that the exposure of the BiTe flux at even higher temperatures results in anisotropic etching of the substrates due, presumably, to the Bi substitution by the In atoms from the substrates. By growing BiTe layers on InP(001), we demonstrate that the bond anisotropy on the substrate surface gives rise to a reduction in the in-plane epitaxial alignment symmetry. source:iopscience More informations about other products like InP substrate , Inp Wafer etc welcome visit our website: semiconductorwafers.net, send us email at angel.ye@powerwaywafer.com or powerwaymaterial@gmail.com.

  • Diamond turning of small Fresnel lens array in single crystal InSb

    2019-01-14

    A small Fresnel lens array was diamond turned in a single crystal InSb wafer using a half-radius negative rake angle (−25°) single-point diamond tool. The machined array consisted of three concave Fresnel lenses cut under different machining sequences. The Fresnel lens profiles were designed to operate in the paraxial domain having a quadratic phase distribution. The sample was examined by scanning electron microscopy and an optical profilometer. Optical profilometry was also used to measure the surface roughness of the machined surface. Ductile ribbon-like chips were observed on the cutting tool rake face. No signs of cutting edge wear was observed on the diamond tool. The machined surface presented an amorphous phase probed by micro Raman spectroscopy. A successful heat treatment of annealing was carried out to recover the crystalline phase on the machined surface. The results indicated that it is possible to perform a 'mechanical lithography' process in single crystal semiconductors. source:iopscience For more information or more products like Germanium Single Crystals, single crystal wafers ,InSb wafer etc please visit our website: semiconductorwafers.net, send us email at angel.ye@powerwaywafer.com or powerwaymaterial@gmail.com.

  • Layered growth modelling of epitaxial growth processes for SiC polytypes

    2019-01-08

    Epitaxial growth processes for SiC polytypes in which a SiC substrate is employed are studied using a layered growth model. The corresponding phase diagrams of epitaxial growth processes are given. First-principles calculations are used to determine the parameters in the layered growth model. The layered growth phase diagrams show that when the rearrangement of atoms in one surface Si–C bilayer is allowed, the 3C-SiC structure is formed. When the rearrangement of atoms in two surface Si–C bilayers is allowed, the 4H-SiC structure is formed. When the rearrangement of atoms in more than two surface Si–C bilayers, excepting the case of five surface Si–C bilayers, is allowed, the 6H-SiC structure is formed, which is also shown to be the ground state structure. When the rearrangement of atoms in five surface Si–C bilayers is allowed, the 15R-SiC structure is formed. Thus the 3C-SiC phase would grow epitaxially at low temperature, the 4H-SiC phase would grow epitaxially at intermediate temperature and the 6H-SiC or 15R-SiC phases would grow epitaxially at higher temperature. source:iopscience For more information, please visit our website: www.semiconductorwafers.net, send us email at angel.ye@powerwaywafer.com or powerwaymaterial@gmail.com.

First << 1 2 3 4 5 6 7 8 9 10 >> Last
[  A total of  27  pages]

Contact Us

If you would like a quotation or more information about our products, please leave us a message, will reply you as soon as possible.
   
Contact Us Contact Us 
If you would like a quotation or more information about our products, please leave us a message, will reply you as soon as possible.