Who We Are

As the lead manufacturer of compound semiconductor material in China. PAM-XIAMEN develops advanced crystal growth and epitaxy technologies, range from the first generation Germanium wafer, second generation Gallium Arsenide with substrate growth and epitaxy on III-V silicon doped n-type semiconducto1
Read More

After more than 20 years of accumulation and development, our company has an obvious advantage in technology innovation and talent pool. 

In the future,We need to speed up the pace of actual action to provide customers with better products and services

Doctor Chan -CEO Of Xiamen Powerway Advanced Material Co., Ltd

Our Products

blue laser

GaN Templates

PAM-XIAMEN's Template Products consist of crystalline layers of gallium nitride (GaN), aluminum nitride (AlN),aluminum gallium nitride (AlGaN)and indium gallium nitride (InGaN), which are deposited on sapphire substrates, silicon carbide or silicon.PAM-XIAMEN's Template Products enable 20-50% shorter epitaxy cycle times and higher quality epitaxial1

gan on silicon

Freestanding GaN substrate

PAM-XIAMEN has established the manufacturing technology for freestanding (gallium nitride)GaN substrate wafer, which is for UHB-LED and LD. Grown by hydride vapour phase epitaxy (HVPE) technology,Our GaN substrate has low defect density.

GaAs crystal

GaAs (Gallium Arsenide) Wafers

PWAM Develops and manufactures compound semiconductor substrates-gallium arsenide crystal and wafer.We has used advanced crystal growth technology,vertical gradient freeze(VGF) and GaAs wafer processing technology,established a production line from crystal growth, cutting, grinding to  polishing processing and built a 100-class clean room for 1

sic crystal

SiC Epitaxy

We provide custom thin film (silicon carbide) SiC epitaxy on 6H or 4H substrates for the development of silicon carbide devices. SiC epi wafer is mainly used for Schottky diodes, metal-oxide semiconductor field-effect transistors, junction field effect transistors, bipolar junction transistors, thyristors, GTO, and insulated gate bipolar.

sic crystal

SiC Substrate

PAM-XIAMEN offers semiconductor silicon carbide wafers,6H SiC and 4H SiC in different quality grades for researcher and industry manufacturers. We has developed SiC crystal growth technology and SiC crystal wafer processing technology,established a production line to manufacturer SiC substrate,Which is applied in GaN epitaxy device,power devices,hi1

gan expitaxy

GaN based LED Epitaxial Wafer

PAM-XIAMEN's GaN(gallium nitride)-based LED epitaxial wafer is for ultra high brightness blue and green light emitting diodes (LED) and laser diodes (LD) application.

gan HEMT epitaxy

GaN HEMT epitaxial wafer

Gallium Nitride (GaN) HEMTs (High Electron Mobility Transistors) are the next generation of RF power transistor technology.Thanks to GaN technology,PAM-XIAMEN now offer AlGaN/GaN HEMT Epi Wafer on sapphire or Silicon,and AlGaN/GaN on sapphire template.

sic crystal

SiC Wafer Reclaim

PAM-XIAMEN is able to offer the following SiC reclaim wafer services.

Why Choose Us

  • Free And Professional Technology Support

    You can get our free technology service from enquiry to after service based on our 25+ experiences in semiconductor line.

  • Good Sales Service

    Our goal is to meet all of your requirements, no matter how small orders and how difficult questions they may be, to maintain sustained and profitable growth for every customer through our qualified products and satisfying service.

  • 25+ Years Experiences

    With more than 25+years experiences in compound semiconductor material field and export business, our team can assure you that we can understand your requirements and deal with your project professionally.

  • Reliable Quality

    Quality is our first priority. PAM-XIAMEN has been ISO9001:2008, owns and shares four modern facories which can provide quite a big range of qualified products to meet different needs of our customers, and every order has to be handled through our rigorous quality system. Test report is provided for1

"We have been using the Powerway epi wafers for some of our work.We are very impressed with the quality of the epi"
James S.Speck, Materials Department University of California
2018-01-25
"Dear PAM-XIAMEN teams, thank you for your profession opinion, the problem was solved, we are so glad to be your partner"
Raman K. Chauhan, Seren Photonics
2018-01-25
"Thank you for quick reply of my questions and competitive price, it is very useful for us, we will order again soon"
Markus Sieger, University of Ulm
2018-01-25
"The silicon carbide wafers have arrived today,and we really pleased with them! Thumbs up to your production crew!"
Dennis, University of Exeter
2018-01-25

The World’s Most Famous Universities & Companies Trust Us

Latest News

Structural and optical characterization of GaSb on Si (001) grown by Molecular Beam Epitaxy

2019-04-17

GaSb epilayers were grown on Si (001) using molecular beam epitaxy via AlSb quantum dots as an interfacial misfit (IMF) array between the Si substrates and GaSb epilayers. The effect of IMF array thickness, growth temperature and post annealing on the surface morphology, structural and optical properties of the GaSb on Si were investigated. Among five different IMF array thicknesses (5, 10, 20, 40 and 80 ML) that were used in this study, the best result was obtained from the sample with a 20 ML AlSb IMF array. Additionally, it was found that although the full width at half maximum (FWHM) and threading dislocation (TD) densities obtained from high resolution x-ray diffraction curves can be improved by increasing the growth temperature, a decrease in the photoluminescence (PL) signal and an increase in the surface roughness (RMS) emerged. On the other hand, the results indicate that by applying post annealing the GaSb epilayer crystal quality can be improved in terms of FWHM, TD density,...

Read More

In 2018, China's semiconductor materials market is 8.5 billion US dollars

2019-04-08

As an important part of new materials, semiconductor materials are the top priority of all countries in the world for the development of electronic information industry. It supports the development of localization of electronic information industry and is of great significance to industrial structure upgrading, national economy and national defense construction. In 2018, domestic semiconductor materials, with the joint efforts of all parties, achieved gratifying results in some areas, but the progress in the localization of key materials in the middle and high-end areas was slow, and the breakthroughs were few. The overall situation is not optimistic. China's semiconductor material segmentation progress is not uniform According to WSTS, in 2018, under the guidance of the memory market, the global semiconductor market continued to maintain rapid growth. The annual market size is expected to reach 477.94 billion US dollars, an increase of 15.9%. However, as the problem of the shortage of...

Read More

Tuning the polarity of charge transport in InSb nanowires via heat treatment

2019-04-02

InSb nanowire (NW) arrays were prepared by pulsed electrodeposition combined with a porous template technique. The resulting polycrystalline material has a stoichiometric composition (In:Sb = 1:1) and a high length-to-diameter ratio. Based on a combination of Fourier transform infrared spectroscopy (FTIR) analysis and field-effect measurements, the band gap, the charge carrier polarity, the carrier concentration, the mobility and the effective mass for the InSb NWs was investigated. In this preliminary work, a transition from p-type to n-type charge transport was observed when the InSb NWs were subjected to annealing. Source:IOPscience For more information, please visit our website: www.semiconductorwafers.net, send us email at sales@powerwaywafer.com or powerwaymaterial@gmail.com

Read More

Advantages, challenges and countermeasures of GaN application in RF field

2019-03-25

At present, gallium nitride (GaN) technology is no longer limited to power applications, and its advantages are also infiltrating into all corners of the RF/microwave industry, and the impact on the RF/microwave industry is growing, and should not be underestimated, because it can be used from space, military radar to cellular communications applications. Although GaN is often highly correlated with power amplifiers (PA), it has other use cases. Since its launch, the development of GaN has been remarkable, and with the advent of the 5G era, it may be more interesting. The role of GaN in radar and space Two variants of GaN technology are GaN-on-silicon (GaN-on-Si) and GaN-on-silicon-carbide(GaN-on-SiC). According to Damian McCann, director of engineering at Microsemi's RF/Microwave Discrete Products Division, GaN-on-SiC has contributed a great deal to space and military radar applications. Today, RF engineers are looking for new applications and solutions to take advantage of GaN-on-SiC...

Read More

The generation of crystal defects in Ge-on-insulator (GOI) layers in the Ge-condensation process

2019-03-18

The formation process of crystal defects in a Ge-on-insulator layer(GOI layer)  fabricated by oxidizing a SiGe-on-insulator (SGOI) layer, known as the Ge-condensation technique, is studied systematically. It is found that the crystal defects in the GOI layer are threading dislocations and microtwins that are formed mainly in the Ge fraction range larger than ~0.5. Also, when the Ge fraction reaches ~1 and the GOI layer is formed, the density of microtwins significantly decreases and their width considerably increases. The relaxation of compressive strain, observed in SGOI and GOI layers, is not attributable to the formation of the microtwins, but to the perfect dislocations that cannot be detected as defects in the lattice image. Source:IOPscience For more information, please visit our website: www.semiconductorwafers.net, send us email at sales@powerwaywafer.com and powerwaymaterial@gmail.com

Read More

Infrared spectroscopy characterization of 3C–SiC epitaxial layers on silicon

2019-03-12

We have measured the transmission Fourier transform infrared spectra of cubic silicon carbide (3C–SiC polytype) epitaxial layer with a 20 µm thickness on a 200 µm thick silicon substrate. Spectra were recorded in the 400–4000 cm−1 wavenumber range. A novel approach of IR spectra computations based on the recursion capability of the C programming language is presented on the basis of polarized light propagation in layered media using generalized Fresnel's equations. The complex refractive indices are the only input parameters. A remarkable agreement is found between all of the experimental SiC and Si spectral features and the calculated spectra. A comprehensive assignment of (i) the two fundamental transverse optical (TO) (790 cm−1) and longitudinal optical (LO) (970 cm−1) phonon modes of 3C–SiC, (ii) with their overtones (1522–1627 cm−1) and (iii) the two-phonon optical-acoustical summation bands (1311–1409 cm−1) is achieved on the basis of available literature data. This approach allo...

Read More

Chemical mechanical polishing and nanomechanics of semiconductor CdZnTe single crystals

2019-03-05

(1 1 1), (1 1 0) Cd0.96Zn0.04Te and (1 1 1) Cd0.9Zn0.1Te semiconductor wafers grown by the modified vertical Bridgman method with dimensions of 10 mm × 10 mm × 2.5 mm were lapped with a 2–5 µm polygonal Al2O3 powder solution, and then chemically mechanically polished by an acid solution having nanoparticles with a diameter of around 5 nm, corresponding to the surface roughnesses Ra of 2.135 nm, 1.968 nm and 1.856 nm. The hardness and elastic modulus of (1 1 1), (1 1 0) Cd0.96Zn0.04Te and (1 1 1) Cd0.9Zn0.1Te single crystals are 1.21 GPa, 42.5 GPa; 1.02 GPa, 44.0 GPa; and 1.19 GPa, 43.4 GPa, respectively. After nanocutting is performed by the Berkovich nanoindenter, the surface roughness Ra of the (1 1 1) Cd0.9Zn0.1Te single crystal attains a 0.215 nm ultra-smooth surface. The hardness and elastic modulus of three kinds of CdZnTe single crystals decrease with the increase of indentation load. When the nanoindenter departs the surface of the crystals, the adherence effects are obvious fo...

Read More

Study on AlGaN/GaN growth on carbonized Si substrate

2019-02-26

AlGaN/GaN films were grown on carbonized Si(111) substrates, which were employed to prevent impurities such as residual Ga atoms from reacting and deteriorating the surface of Si substrates. The cleaning process for the flow channel in metal organic chemical vapor deposition (MOCVD) could effectively be eliminated by using this carbonized Si substrate, and high-quality AlGaN/GaN films were obtained. Source:IOPscience For more information, please visit our website: www.semiconductorwafers.net, send us email at angel.ye@powerwaywafer.com or powerwaymaterial@gmail.com

Read More

PAM XIAMEN Offers Epitaxial growth of AlGaN GaN based HEMT on Si wafers

2019-02-18

PAM XIAMEN Offers Epitaxial growth of AlGaN/GaN based HEMT on Si wafers Recently, PAM XIAMEN, a leading supplier of GaN epitaxial wafers, announced that it has successfully developed "6-inch silicon-on-silicon (GaN-on-Si) epitaxial wafers" and its 6 inch size is on mass production. PAM XIAMEN is effective in third-generation semiconductors In order to lay out and grasp the development opportunities of the wide bandgap compound semiconductor materials (i.e. the third generation semiconductor materials) industry, PAM XIAMEN has been invested in research and development continuously, the data show that PAM XIAMEN is mainly engaged in the design, development and production of semiconductor materials, especially gallium nitride (GaN) epitaxial materials, focusing on the application of related materials in avionics, 5G communication, Internet of Things and other fields, Improving and enriching the company's industrial chain. Since its inception, PAM XIAMEN has overcome the technical difficul...

Read More

Generation of difference-frequency radiation in the far- and mid-IR ranges in a two-chip laser based on gallium arsenide on a germanium substrate

2019-02-11

The possibility of efficient generation of difference-frequency radiation in the far- and mid-IR ranges in a two-chip laser based on gallium arsenide grown on a germanium substrate is considered. It is shown that a laser with a waveguide of width 100 μm emitting 1 W in the near-IR range can generate ≈40 μW at the difference frequency in the region 5—50 THz at room temperature. Source:IOPscience For more information, please visit our website: www.semiconductorwafers.net, send us email at angel.ye@powerwaywafer.com or powerwaymaterial@gmail.com

Read More

Contact Us

If you would like a quotation or more information about our products, please leave us a message, will reply you as soon as possible.