Home / Blog /

A hybrid density functional view of native vacancies in gallium nitride

Blog

A hybrid density functional view of native vacancies in gallium nitride

2018-05-24

We investigated the transition energy levels of the vacancy defects in gallium nitride by means of a hybrid density functional theory approach (DFT). We show that, in contrast to predictions from a recent study on the level of purely local DFT, the inclusion of screened exchange stabilizes the triply positive charge state of the nitrogen vacancy for Fermi energies close to the valence band. On the other hand, the defect levels associated with the negative charge states of the nitrogen vacancy hybridize with the conduction band and turn out to be energetically unfavorable, except for high n-doping. For the gallium vacancy, the increased magnetic splitting between up-spin and down-spin bands due to stronger exchange interactions in sX-LDA pushes the defect levels deeper into the band gap and significantly increases the associated charge transition levels. Based on these results, we propose the epsilon(0| − 1) transition level as an alternative candidate for the yellow luminescence in GaN.


Source:IOPscience


For more information, please visit our website: www.semiconductorwafers.net,

send us email at angel.ye@powerwaywafer.com or powerwaymaterial@gmail.com

Contact Us

If you would like a quotation or more information about our products, please leave us a message, will reply you as soon as possible.
   
Contact Us Contact Us 
If you would like a quotation or more information about our products, please leave us a message, will reply you as soon as possible.